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measurements for studies of local order in alloys is 
again emphasized. In the low-angle region the Compton 
scattering, the thermal diffuse scattering, atomic size 
effects and thermal attenuations are all at their 
smallest, so that  with low-angle measurements one can 
obtain the greatest possible accuracy of interpretation. 

The authors are grateful to Dr M. Marezio for his 
help with the measurements of the diffuse scattering 
from Cu2Au. 
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Ultrasonic Methods of Determining Elasto-Optic Constants of Uniaxial  
and Biaxial Crystals* 
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Ultrasonic methods of studying the photoelastic behaviour of crystals, suggested by Mueller in 
1938, have heretofore been applied only to glasses and cubic crystals. The method has been applied 
to uniaxial and biaxial crystals. Both theory and experiment are given. The ultrasonic methods 
replace the more difficult and less accurate interferometric methods for determining the elasto-optic 
constants. Results obtained on calcite, quartz, and barite are presented. 

In troduct ion  

Studies on the photoelastic behavior of solids have as 
their aim the determination of elasto-optic and piezo- 
optic constants (the p's and q's of Pockels (1906)) for 
the given solid. In an actual experiment, one deter- 
mines the small changes in refractive index in different 
directions when a stress of known magnitude is applied 
in certain convenient directions. The bulk of the results 
obtained for p's and q's is based on the optical measure- 
ments in which one obtains relative path retardations 
using any one of the well known interferometers. The 
discovery of ultrasonics and the effect of a sound field 
on a transparent crystal through which polarized light 
is passing, led Bergmann & Fues (1936) to indicate the 
possibility of studying the photo-elastic constants of 

* This paper formed a part of thesis presented to Osmania 
University, Hyderabad, India, in 1955. 

t On leave from Osmania University, Hyderabad, India. 

glasses by observing the polarized diffraction spectra 
from a point source. The situation very much im- 
proved when Hiedemann & Hoesch (1936) showed how 
easily line diffraction patterns could be obtained. 
The theory of diffraction of light in solids given by 
Nath & Mueller (1938) was experimentally verified by 
Hiedemann (1938). Subsequently, Mueller (1938) sug- 
gested in detail various methods of obtaining the 
elasto-optic constants of glasses and cubic crystals by 
studying the polarized diffraction spectra. Using the 
procedure suggested by Burstein et al. (1948), Vedam 
(1950) and Iyengar (1953) obtained all the photo- 
elastic constants of some glasses and cubic crystals by 
combining the relative path retardation methods using 
the Babinet compensator with the ultrasonic method 
due to Mueller (1938). I t  may be pointed out that  the 
ultrasonic methods yield results to the same order of 
accuracy as the Babinet compensator method, whereas 
the interferometric methods often yield results differ- 
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ing by as much as 50% from the Babinet measure- 
ments. 

For non-cubic systems, however, all the photoelastic 
constants of quartz, calcite and beryl by Pockels 
(1906) topaz by  Eppendahl (1920), and barite by 
Vedam (1951) have been measured by optical methods, 
i.e., by  Babinet and intefferometric methods. The 
interferometric methods are in several cases not very 
accurate and hence it is desirable to develop another 
method which will be a more reliable supplement to 
the Babinet observations. 

Although Mueller (1938) has indicated tha t  his 
method is also applicable to uniaxial crystals like 
quartz and calcite, no at tempts  seem to have been 
made to use it  to s tudy these crystals. The purpose 
of this paper is to apply Mueller's method to the 
uniaxial crystals quartz and calcite, and the biaxial 
crystal barite. 

T h e o r e t i c a l  c o n s i d e r a t i o n s  

If a mechanical disturbance is propagated in an 
arbi t rary direction in a crystal then in general it  will 
be in the form of quasi longitudinal and quasi trans- 
verse waves. In  certain special directions in the crystal 
the waves will be pure, as shown by  Borgnis (1955). 
In our present investigations, we are interested only 
in the purely longitudinal waves and the diffraction 
pat tern  they produce. Therefore, we consider only 
waves propagated along the axes of a uniaxial crystal. 

Consider a longitudinal wave propagated along the 
Z axis of a uniaxial crystal such as calcite. This wave 
produces longitudinal strains along the z axis only. 
We shall deliberately avoid the formation of shear 
waves in the crystal; hence their influence on the 
optical ellipsoid is eliminated. For the particular 
direction of observation parallel to the y axis, before 
the crystal is strained, the cross-section of the optical 
ellipsoid is represented by  

B l l X  ~" + B83Z 2 = 1 . (1 )  

Under the influence of the longitudinal waves, and 
consequent longitudinal strains, every volume element 
of the crystal becomes bireffingent. Hence the cross 
section of the optical ellipsoid now becomes 

B ' i l  X ~" + B ' 3 3 Z  ~" jr 2B3i Z X  = 1 . (2) 

Then according to laws of photoelasticity, the polar- 
ization constants B,~ for calcite are given by 

B'ii -- Bii ---- piiXx jr pi2yy Jr pi3Zz Jr pi4yz 

B'33 -- B33 ---- P3ixx Jr P3iyy Jr P33zz 
B'3i  = p4i x~ - p4ayu Jr p ~ y z  • 

The ellipse (2) has its axes in the directions which 
make angles 0 and (0Jr90 °) with the Z axis where 
tan 20 = 2 B 3 1 / ( B l l - B 3 a ) .  These directions do not vary  
with time and are the same for every volume element. 

For a longitudinal wave along the Z axis the only 
strain tha t  remains is zz. 

B'ii -- Bii ---- pi3zz 
and (3) 

B'38 - B33  = p88z~ • 

Hence there is no tilt  of the axes of the optical 
ellipsoid. 

The lengths ai and a m  of the new or the transformed 
axes of the co-ordinate system (which in the present 
case coincide with the original axes, i.e., the axes of 
the crystal) vary  periodically and we can write for a 
progressive wave, following Mueller (1938) 

ai  -- ( 1 / n x 2 ) - - i i 2 7 ~ , A k ~  

x sin 2 ~ ( t - - ( z  cos q~+y sin q))/v) 

a m  = (1/n~ 2) -- i m 2 ~ , A k ~ Q  

x s i n 2 z ~ ( t -  (z c o s q ) + y s i n q ) ) / v ) ,  (4) 

where ~, A, k, Q, t, q~ and v have the usual significance. 
Thus the quantities ii and i m  are proportional to 

the amplitudes of variation of the principal axes of 
the index ellipse. 

Further  it  may  be noted tha t  ai represents B 'n  and 
an i  represents B'33 at  any particular instant. 

From equations (4) we have 

ii/i i i i  = ( a i -  1/nx2)/(aiii- 1/nz ~) = piszz/p38z.z = pis/paa . 
(5) 

Now, ff /~i and /~iii are the amplitudes of index 
variations along the X and Z directions, respectively, 
then 

a i =  1/(nx+/ti) 9' ~ ( 1 / n 2 ) - - ( 2 k t I / n z  3) (6) 

and similarly 

a m  ~ (1/nz 2) - (2/tm/n~ 8) . (6a) 

Hence from equation (4) 

/-~I = n z  8. i I .  K 
and 

/ ~ m  = n~ s .  i r a .  K ,  

where K is a constant. 
Thus the amplitudes of refractive index variation 

are proportional to ii and i m  which are the amplitudes 
of variation of the principal axes of the index ellipse. 
Hence 

# I / # m  = (nxS/nz 8) × ( i i / i m )  

= (noS/ne 8) X (pis/p33) = R i .  (7) 

Further,  these amplitudes of refractive indices 
parallel to and perpendicular to the acoustical wave 
normals cause corrugations of two different degrees 
on the emergent optical wave front. From the Raman- 
Nath theory, each of these corrugated wave fronts 
causes a diffraction pattern. There are then two 
diffraction patterns, one with its electric vector 
parallel to the sound wave normals and the other 
perpendicular to them. The intensity of each pat tern 
of a particular order depends upon the/~ causing the 
pattern. 
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If the incident light is polarized in any arbitrary 
direction, its two components of vibrations of ampli- 
tudes parallel and perpendicular to the acoustical 
wave normals, i.e., parallel to the principal axes, will 
each produce a diffraction pattern whose amplitude in 
the ruth order is given by 

Emi = EzJm(vi) 

EmlII = EIIzJm(VlII),  (8) 

where v i = 2 ~ # I L / 2  and v n i = 2 ~ # i n L / 2 ;  Jm is the 
ruth order Bessel function, L the width of the sound 
field, and ~t the wave length of light. The two com- 
ponents are diffracted to the same extent and have 
the same frequency and phase. For small values of 
m and v 

E m I / E m m  = Ez(v I )m/Em(vm)  m 
= ( E i / E m ) ( # i / # m )  re=R1 m. (9) 

If further EI = Era,  which will be the case of the inci- 
dent light has its electric vector inclined at an angle 
of 45 ° to the sound field, then 

Rim = (no3pls)/(ne3p38) . (10) 

The ratio of intensities in the components of the 
mth diffraction order is 

B.~=[E.~z/Emm]% (11) 

Then, assuming incident light polarized at 45 ° and 
extrapolation to zero sound amplitudes, one has for 
both progressive and standing waves 

Bmo = R12m. (12) 

In most eases one measures the intensity of only the 
first diffraction orders for which m=  1. 

Since the ratio of intensities is the quantity ex- 
perimentally obtained, the sign of R~ cannot be 
determ{ned from the ultrasonic measurements. How- 
ever, this sign is readily obtained from optical measure- 
ments. 

Experimental details 
The method employed by the previous authors consists 
in allowing a plane polarized beam of light to pass 
through the experimental crystal prism in a direction 
perpendicular to the direction of ultrasonic wave 
normals (the plane of the polarization of the beam o{ 
light making an angle of 45 ° with them). An analyzer 
is used to study the state of polarization of the dif- 
fracted orders in the Hiedemann pattern. This method 
is suitable only for glasses and cubic crystals. For 
uniaxial and biaxial crystals which are birefringent 
(even in the unexcited state), the method of passing 
natural light through a double image prism and 
examining it with an analyzer, suggested by Mueller, 
may be employed. An analogous method was used by 
Bergmann & Fues (1936) and by Gates & Hiedemann 
(1956) to study glasses. 

,,.o t P C ,D A 

Fig. 1. Optical arrangement for ultrasonic studies. 
S--Source D--Double image prism 
L--Lens A--Analyzer 
P--Polarizer T Telescope 
C--Crystal specimen with 

attached transducer 

Fig. 1 indicates the experimental arrangement. A 
plane parallel beam of monochromatic light is passed 
through a polarizing nicol P and is polarized at 45 ° 
with the vertical. This plane polarized beam passes 
through the crystal specimen C and then through the 
double image prism D. The double image prism is 
mounted with its axis parallel to the direction of 
observation and is so adjusted that  the two images 
are seen one above the other. The analyzer A can be 
rotated about the optic axis. I t  is initially set in such 
a way that the plane of polarization of light passing 
through it is horizontal. The double image prism is 
then rotated through a right angle, if necessary, to 
make the upper image disappear. This means that  
the lower image has its plane of vibration horizontal 
and the upper one vertical. The analyzer is then 
rotated through 45 ° , the two images now having equal 
intensity. Now the ultrasonic power is applied to the 
experimental crystal along one of its axes and the 
ttiedemann pattern is observed. The ultrasonic power 
is next adjusted, so that  only first orders are excited. 
The images of the first orders for the two perpen- 
dicularly vibrating components differ in their intensity. 
The analyzer is then rotated to equalize the intensities 
of the first order components. Then if c¢ is the angle of 
rotation of the analyzer from the zero position, tan 
gives directly R1 from which the ratio R of the cor- 
responding elasto-optic constants can be calculated. 
The corrections for the finite amplitude of the ultra- 
sonic power, suggested by Mueller (1938), and for 
optical activity, used by Vedam & Ramachandran 
(1951), are made here. 

Uniaxial crystals 
Results for quartz 

Measurements were made on three rectangular 
prisms of quartz. The largest sample had dimensions 
of 10.7 × 10.3 x 9.7 mm. Prisms of different dimensions 
were used both to check the observations in the several 
cases and to see whether the lateral dimensions 
influence the observed values of R. No difference 
could be observed for lateral dimensions between 5 
and 10.3 ram. 

The values of a after allowing for the finite ampli- 
tude of the ultrasonic power and the optical activity 
are indicated in Table 1. 
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Table 1. Ratio of elasto-optic constants of 
low-temperature quartz 

Numerical value of R 
Direc- Diree- Expres- . ^ . 
tion of tion of sion Ultra- 

ultrasonic observa- for the sonic Optical 
excitation tion c~ ratio R method method 

X Z 45 4-12 ° Ply/P11 1.57 1.67 
X Y 45 4-19 Pal/Pll 2.00 1.78 
Z X 45 ÷ 25 Pla/Paa 2.81 2-67 

The numerical  values of R, the  rat ios of the elasto- 
optic constants,  obtained by the ultrasonic method  
are in fa i r ly  good agreement  with those obtained by  
Pockels (1906), who determined them by  optical 
methods.  Thus one has an independent  check on the  
optical measurements .  

Results for calcite 

Prisms of calcite having approx imate ly  the same 
dimensions as the  quar tz  samples were used in these 
measurements .  The results are given in Table 2. 

Table 2. Ratio of elasto-optic constants of calcite 

Numerical value of R 
Direction Direction ^ r 

of of Expression Ultrasonic Optical 
excitation observation for R method method 

X Z P12/Pll 1.90 2.0 
X Y Pal/P11 2.79 3.0 
Z X Pla/Paa 2.40 2.6 

The da t a  under  R are those calculated f rom Pockels '  
values for calcite and  those obtained from the ultra-  
sonic studies. The agreement  is fa i r ly  good. 

B i a x i a l  c r y s t a l s  

The expressions collected in Table 3 can be derived 
for or thorhombic crystals.  The derivat ion is very  
similar to t h a t  given for the  uniaxial  crystal  calcite. 

Table 3. Ratio of elasto.optic constants for 
orthorhombic crystals 

R, the ratio of 
Direction of Direction of elasto-optic 
excitation observation constants 

X Y P31/Pil 
X Z P21/P11 
Y Z P12/P22 
Y X P32/P22 
Z X P23/P33 
Z Y P13/Pa3 

Results for barite 

The elasto-optic constants  were measured for several 
samples of bar i te  by  the  ultrasonic method.  The 
results are given in Table 4. 

Table 4. Ratio of elasto-optic constants for barite 

Numerical value of R 
Ultrasonic Optical 

R method method 
Pal~P11 0.73 0.76 
P21/Pll 1.28 1.19 
P12/P22 1-33 1.41 
Pa2/P~.2 1.04 0.79 
P2a/Paa 0.81 0.89 
Pla/Paa 0"75 0.71 

I t  is seen t h a t  the values obtained by  studies of the  
ultrasonic diffraction pa t t e rn  are in good agreement  
with the  values obtained by  the optical measurements  
by  Vedam (1951) in almost  all cases. 

C o n c l u s i o n s  

The ultrasonic method  can be used to s tudy  both  
uniaxial  and biaxial  crystals.  I t s  accuracy depends 
pr imar i ly  on the size of the angle of polarizat ion of 
light. In  the  present  measurements  there can be 
inaccuracies up to 10%. 

The author  records his grateful  thanks  to Prof.  
S. B h a g a v a n t a m  for his kind interest  during the  pro- 
gress of these invest igations in 0 s m a n i a  Univers i ty  
during 1954. The au thor  also wishes to t h a n k  Prof. 
E. Hiedemann  and Prof. H.  Mueller for the  very  
valuable discussions, and Prof. M . A .  Breazeale for 
assistance with the  manuscr ipt .  
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